You can add customs functions for the agent to use, allowing the agent to expand its capabilities. These custom functions can be seamlessly integrated with the agent’s skills, enabling a wide range of user-defined operations.

Example Usage

import os

import pandas as pd

from pandasai import Agent

from pandasai.skills import skill



employees_data = {

    "EmployeeID": [1, 2, 3, 4, 5],

    "Name": ["John", "Emma", "Liam", "Olivia", "William"],

    "Department": ["HR", "Sales", "IT", "Marketing", "Finance"],

}



salaries_data = {

    "EmployeeID": [1, 2, 3, 4, 5],

    "Salary": [5000, 6000, 4500, 7000, 5500],

}



employees_df = pd.DataFrame(employees_data)

salaries_df = pd.DataFrame(salaries_data)



# Function doc string to give more context to the model for use this skill

@skill

def plot_salaries(names: list[str], salaries: list[int]):

    """

    Displays the bar chart  having name on x-axis and salaries on y-axis

    Args:

        names (list[str]): Employees' names

        salaries (list[int]): Salaries

    """

    # plot bars

    import matplotlib.pyplot as plt



    plt.bar(names, salaries)

    plt.xlabel("Employee Name")

    plt.ylabel("Salary")

    plt.title("Employee Salaries")

    plt.xticks(rotation=45)



# By default, unless you choose a different LLM, it will use BambooLLM.

# You can get your free API key signing up at https://pandabi.ai (you can also configure it in your .env file)

os.environ["PANDASAI_API_KEY"] = "YOUR_API_KEY"



agent = Agent([employees_df, salaries_df], memory_size=10)

agent.add_skills(plot_salaries)



# Chat with the agent

response = agent.chat("Plot the employee salaries against names")


Add Streamlit Skill

import os

import pandas as pd

from pandasai import Agent

from pandasai.skills import skill

import streamlit as st



employees_data = {

    "EmployeeID": [1, 2, 3, 4, 5],

    "Name": ["John", "Emma", "Liam", "Olivia", "William"],

    "Department": ["HR", "Sales", "IT", "Marketing", "Finance"],

}



salaries_data = {

    "EmployeeID": [1, 2, 3, 4, 5],

    "Salary": [5000, 6000, 4500, 7000, 5500],

}



employees_df = pd.DataFrame(employees_data)

salaries_df = pd.DataFrame(salaries_data)



# Function doc string to give more context to the model for use this skill

@skill

def plot_salaries(names: list[str], salaries: list[int]):

    """

    Displays the bar chart having name on x-axis and salaries on y-axis using streamlit

    Args:

        names (list[str]): Employees' names

        salaries (list[int]): Salaries

    """

    import matplotlib.pyplot as plt



    plt.bar(names, salaries)

    plt.xlabel("Employee Name")

    plt.ylabel("Salary")

    plt.title("Employee Salaries")

    plt.xticks(rotation=45)

    plt.savefig("temp_chart.png")

    fig = plt.gcf()

    st.pyplot(fig)



# By default, unless you choose a different LLM, it will use BambooLLM.

# You can get your free API key signing up at https://pandabi.ai (you can also configure it in your .env file)

os.environ["PANDASAI_API_KEY"] = "YOUR_API_KEY"



agent = Agent([employees_df, salaries_df], memory_size=10)

agent.add_skills(plot_salaries)



# Chat with the agent

response = agent.chat("Plot the employee salaries against names")

print(response)