PandasAI 3.0 is currently in beta. This documentation reflects the latest features and functionality, which may evolve before the final release.
Using the pai.create()
method with CSV and parquet files
The simplest way to define a semantic layer schema is using the create
method:
import pandasai as pai
# Load your data: for example, in this case, a CSV
file = pai.read_csv("data.csv")
df = pai.create(
# Format: "organization/dataset"
path="company/sales-data",
# Input dataframe
df = file,
# Optional description
description="Sales data from our retail stores",
# Define the structure and metadata of your dataset's columns.
# If not provided, all columns from the input dataframe will be included.
columns=[
{
"name": "transaction_id",
"type": "string",
"description": "Unique identifier for each sale"
},
{
"name": "sale_date"
"type": "datetime",
"description": "Date and time of the sale"
}
]
)
- path
The path uniquely identifies your dataset in the PandasAI ecosystem using the format “organization/dataset”.
file = pai.read_csv("data.csv")
pai.create(
path="acme-corp/sales-data", # Format: "organization/dataset"
...
)
Type: str
- Must follow the format: “organization-identifier/dataset-identifier”
- Organization identifier should be unique to your organization
- Dataset identifier should be unique within your organization
- Can be used both locally and with the PandasAI Data Platform
- Examples: “acme-corp/sales-data”, “my-org/customer-profiles”
- df
The input dataframe that contains your data, typically created using pai.read_csv()
.
file = pai.read_csv("data.csv") # Create the input dataframe
pai.create(
path="acme-corp/sales-data",
df=file, # Pass your dataframe here
...
)
Type: DataFrame
- Must be a pandas DataFrame created with
pai.read_csv()
- Contains the raw data you want to enhance with semantic information
- Required parameter for creating a semantic layer
- description
A clear text description that helps others understand the dataset’s contents and purpose.
file = pai.read_csv("data.csv")
pai.create(
path="company/sales-data",
df = file,
description="Daily sales transactions from all retail stores, including transaction IDs, dates, and amounts",
...
)
Type: str
- The purpose of the dataset
- The type of data contained
- Any relevant context about data collection or usage
- Optional but recommended for better data understanding
- columns
Define the structure and metadata of your dataset’s columns to help PandasAI understand your data better.
Note: If the columns
parameter is not provided, all columns from the input dataframe will be included in the semantic layer.
When specified, only the declared columns will be included, allowing you to select specific columns for your semantic layer.
file = pai.read_csv("data.csv")
pai.create(
path="company/sales-data",
df = file,
description="Daily sales transactions from all retail stores",
columns=[
{
"name": "transaction_id",
"type": "string",
"description": "Unique identifier for each sale"
},
{
"name": "sale_date"
"type": "datetime",
"description": "Date and time of the sale"
},
{
"name": "quantity",
"type": "integer",
"description": "Number of units sold"
},
{
"name": "price",
"type": "float",
"description": "Price per unit in USD"
},
{
"name": "is_online",
"type": "boolean",
"description": "Whether the sale was made online"
}
]
)
Type: dict[str, dict]
- Keys: column names as they appear in your DataFrame
- Values: dictionary containing:
type
(str): Data type of the column
- “string”: IDs, names, categories
- “integer”: counts, whole numbers
- “float”: prices, percentages
- “datetime”: timestamps, dates
- “boolean”: flags, true/false values
description
(str): Clear explanation of what the column represents
Using the pai.create()
method for SQL databases
For SQL databases, you can use the create
method to define your data source and schema. Here’s an example using a MySQL database:
sql_table = pai.create(
# Format: "organization/dataset"
path="company/health-data",
# Optional description
description="Heart disease dataset from MySQL database",
# Define the source of the data, including connection details and
# table name
source={
"type": "mysql",
"connection": {
"host": "${DB_HOST}",
"port": 3306,
"user": "${DB_USER}",
"password": "${DB_PASSWORD}",
"database": "${DB_NAME}"
},
"table": "heart_data"
}
)
In this example:
- The
path
defines where the dataset will be stored in your project
- The
description
provides context about the dataset
- The
source
object contains:
- Database connection details (using environment variables for security)
- Table name to query
- Column definitions with types and descriptions
For security best practices, always use environment variables for sensitive connection details. Never hardcode credentials in your code.
You can then use this dataset like any other:
# Load the dataset
heart_data = pai.load("organization/health-data")
# Query the data
response = heart_data.chat("What is the average age of patients with heart disease?")
YAML Semantic Layer Configuration
Whenever you create a semantic layer schema using the create
method, a YAML configuration file is automatically generated for you in the datasets/
directory of your project.
As an alternative, you can use a YAML schema.yaml
file directly in the datasets/organization_name/dataset_name
directory.
The following sections detail all available configuration options for your schema.yaml file:
- description
A clear text description that helps others understand the dataset’s contents and purpose.
Type: str
- The purpose of the dataset, in order for everyone in the organization and for the LLMs to understand
description: Daily sales transactions from all retail stores, including transaction IDs, dates, and amounts
- source (mandatory for SQL datasets)
Specify the data source for your dataset.
source:
type: postgres
connection:
host: postgres-host
port: 5432
database: postgres
user: postgres
password: ******
table: orders
view: false
The available data sources depends on the installed data extensions (sql databases, data lakehouses, yahoo_finance).
Type: dict
type
(str): Type of data source
- “postgresql” for PostgreSQL databases
- “mysql” for MySQL databases
- “bigquery” for Google BigQuery data
- “snowflake” for Snowflake data
- “databricks” for Databricks data
- “oracle” for Oracle databases
- “yahoo_finance” for Yahoo Finance data
connection_string
(str): Connection string for the data source
query
(str): Query to retrieve data from the data source
- columns
Define the structure and metadata of your dataset’s columns to help PandasAI understand your data better.
columns:
- name: transaction_id
type: string
description: Unique identifier for each sale
- name: sale_date
type: datetime
description: Date and time of the sale
Type: list[dict]
- Each dictionary represents a column.
- Fields:
name
(str): Name of the column.
- For tables: Use simple column names (e.g.,
transaction_id
).
type
(str): Data type of the column.
- Supported types:
"string"
: IDs, names, categories.
"integer"
: Counts, whole numbers.
"float"
: Prices, percentages.
"datetime"
: Timestamps, dates.
"boolean"
: Flags, true/false values.
description
(str): Clear explanation of what the column represents.
Constraints:
- Column names must be unique.
- For views, all column names must be in the format
[table].[column]
.
Apply transformations to your data to clean, convert, or anonymize it.
transformations:
- type: anonymize
params:
columns:
- transaction_id
method: hash
- type: convert_timezone
params:
columns:
- sale_date
from_timezone: UTC
to_timezone: America/New_York
Type: list[dict]
- Each dictionary represents a transformation
type
(str): Type of transformation
- “anonymize” for anonymizing data
- “convert_timezone” for converting timezones
params
(dict): Parameters for the transformation
If you want to learn more about transformations, check out the transformations documentation.
Group By Configuration
The group_by
field allows you to specify which columns can be used for grouping operations. This is particularly useful for aggregation queries and data analysis.
columns:
- name: order.date
type: datetime
description: Date and time of the sale
...
group_by:
- order.date
- order.status
Configuration Options:
group_by
(list[str]):
- List of column references in the format
table.column
- Specifies which columns can be used for grouping operations
- Can reference any column from any table in your schema
Column expressions and aliases
The expression
field allows you to specify a SQL expression for a column. This expression will be used in the query instead of the column name.
columns:
- name: transaction_amount
type: float
description: Amount of the transaction
alias: amount
- name: total_revenue
type: float
description: Total revenue including tax
expression: "transaction_amount * (1 + tax_rate)"
alias: revenue
Configuration Options:
-
alias
(str):
- Alternative name that can be used to reference the column
- Useful for supporting different naming conventions or more intuitive names
- Must be unique across all columns and their aliases
-
expression
(str):
- Formula for calculating derived columns
- Uses other column names as variables
- Supports basic arithmetic operations (+, -, *, /)
- Can reference other columns in the same schema
Best Practices:
- Keep aliases concise and descriptive
- Avoid using special characters or spaces in aliases
- Use consistent naming conventions
- Document the purpose of derived columns in their description
Responses are generated using AI and may contain mistakes.